Molecular Neurobiology | 2021

The Neuroinflammatory and Neurotoxic Potential of Palmitic Acid Is Mitigated by Oleic Acid in Microglial Cells and Microglial-Neuronal Co-cultures

 
 
 
 
 
 
 

Abstract


Neuroinflammation has been implicated in the pathogenesis of neurodegeneration and is now accepted as a common molecular feature underpinning neuronal damage and death. Palmitic acid (PA) may represent one of the links between diet and neuroinflammation. The aims of this study were to assess whether PA induced toxicity in neuronal cells by modulating microglial inflammatory responses and/or by directly targeting neurons. We also determined the potential of oleic acid (OA), a monounsaturated fatty acid, to counteract inflammation and promote neuroprotection. We measured the ability of PA to induce the secretion of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), the induction of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling pathways, as well as the phosphorylation of c-Jun, and the expression of inducible nitric oxide synthase (iNOS). Finally, to determine whether PA exerted an indirect neurotoxic effect on neuronal cells, we employed a microglia-neuron co-culture paradigm where microglial cells communicate with neuronal cells in a paracrine fashion. Herein, we demonstrate that PA induces the activation of the NF-κB signalling pathway and c-Jun phosphorylation in N9 microglia cells, in the absence of increased cytokine secretion. Moreover, our data illustrate that PA exerts an indirect as well as a direct neurotoxic role on neuronal PC12 cells and these effects are partially prevented by OA. These results are important to establish that PA interferes with neuronal homeostasis and suggest that dietary PA, when consumed in excess, may induce neuroinflammation and possibly concurs in the development of neurodegeneration.

Volume 58
Pages 3000-3014
DOI 10.1007/s12035-021-02328-7
Language English
Journal Molecular Neurobiology

Full Text