Peer-to-Peer Networking and Applications | 2019

Sidelobe interference reduced scheduling algorithm for mmWave device-to-device communication networks

 
 
 
 
 

Abstract


Millimeter wave (mmWave) is considered one of effective techniques to realize high speed transmission in device-to-device (D2D) communication networks. However, strong density of mmWave devices poses a big challenge to remove interferences. Traditional resource allocation methods may not be efficient to solve this problem. Different from the previous studies, this paper first introduces time and space division for scheduling in mmWave D2D communication networks. Then, we formulate a time slot allocation problem aiming at maximizing the network throughput per time slot. To handle this problem, we propose a vertex coloring based resource allocation algorithm and redefine concurrent transmission conditions by defining a power decision threshold, which is designed to further reduce the sidelobe interference. Simulation results confirm that different threshold value has different effect on the algorithm and the optimal range is [0.7, 0.9]. It can be also observed that our scheduling algorithm outperforms traditional time division multiple access (TDMA) and traditional vertex coloring algorithm. The throughput per slot of the proposed algorithm is significantly improved around 12.5%.

Volume 12
Pages 228-240
DOI 10.1007/s12083-018-0660-2
Language English
Journal Peer-to-Peer Networking and Applications

Full Text