Annals of Nuclear Medicine | 2019

Fundamental study of radiogallium-labeled aspartic acid peptides introducing octreotate derivatives

 
 
 
 
 
 
 

Abstract


ObjectiveSomatostatin receptors are highly expressed in neuroendocrine tumors, and many radiolabeled somatostatin analogs for diagnosis and treatment have been developed. To simultaneously detect not only primary cancer but also bone metastases, this study aimed to develop a positron emission tomography probe using generator-produced nuclide Gallium-68 (T1/2 = 68\xa0min), in which a carrier for primary cancer, a carrier for bone metastases lesions, and a stable gallium complex are introduced into the one molecule. Based on this strategy, the somatostatin receptor-targeted peptide, [Tyr3]-octreotate (TATE), aspartic acid peptide (Dn) with high binding affinity for hydroxyapatite, and Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as a stable gallium complex were selected. The novel complexes, Ga-DOTA-Dn-TATE (n\u2009=\u20090, 2, 5, 8, or 11), were designed, synthesized, and evaluated. The radiogallium complexes were prepared using the easy-to-handle radioisotope 67Ga due to relatively long half-life.MethodsThe radiogallium complex precursor DOTA-Dn-TATE was synthesized by the Fmoc-based solid-phase method and by the air oxidation method to form the disulfide bond. [67Ga]Ga-DOTA-Dn-TATE was synthesized by reacting DOTA-Dn-TATE and 67Ga. Hydroxyapatite binding assays, in vitro cellular uptake experiments in AR42J tumor cells, in biodistribution experiments in AR42J tumor-bearing mice, were performed using [67Ga]Ga-DOTA-Dn-TATE.ResultsThe radiochemical purities of [67Ga]Ga-DOTA-Dn-TATE were >\u200996.0%. In in vitro and in vivo experiments, [67Ga]Ga-DOTA-D11-TATE had a high affinity for hydroxyapatite and highly accumulated in bone. However, the uptake of [67Ga]Ga-DOTA-D11-TATE into somatostatin receptor-positive AR42J cells was lower than that of [67Ga]Ga-DOTA-TATE, and the accumulation of [67Ga]Ga-DOTA-D11-TATE in tumor was significantly low.ConclusionGa-DOTA-D11-TATE may not be recognized by somatostatin receptor by the introduction of D11, and the charge adjustment may be important for somatostatin receptor-positive cell uptake.

Volume 33
Pages 244-251
DOI 10.1007/s12149-018-01326-5
Language English
Journal Annals of Nuclear Medicine

Full Text