Nano Research | 2019

Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods

 
 

Abstract


Energy storage devices with flexible form factor have become critical components of wearable electronic systems. Inspired by methods of monolithic integration in the microelectronics fabrication process, we propose a planar flexible full-solid-state lithium-ion battery (FSLB) architecture and a layer-by-layer stencil printing assembly method for fabricating batteries on polyethylene terephthalate (PET) substrate. FSLBs use quasi-solid electrolyte based on LiTFSI and ultraviolet (UV)-curable ethoxylated trimethylolpropane triacrylate (ETPTA) polymeric matrix in combination with Li4Ti5O12 (LTO)/LiFePO4 (LFP)-based electrodes. Excellent mechanical flexibility (< 10 mm bending radius) can be achieved. The electrochemical characteristics of electrolyte, including ion conductivity, physical stability during room-temperature and tender assembly processes, are promising. A complete thin film-shape FSLB demonstrated working operation both under planar and bending conditions. The unique architecture and assembly processes open new ways for planar flexible devices to be integrated with flexible energy devices.

Volume 12
Pages 2477 - 2484
DOI 10.1007/s12274-019-2471-z
Language English
Journal Nano Research

Full Text