Nano Research | 2021

Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cycle stability and smart switching capability

 
 
 
 
 
 
 
 
 
 

Abstract


Safe and long lifespan batteries facilitate the development of portable electronics and electric vehicles. Owing to the low-cost, naturally abundance, and trivalent charge carrier of aluminum with the highest theoretical volumetric capacity, rechargeable aqueous aluminum-ion-based batteries are considered as promising next-generation secondary batteries. However, traditional electrolytes and frequent collapse of the host structure of electrode materials greatly jeopardize the cycle stability of the batteries. Here, we develop a novel hydrogel-based electrolyte coupled with stable layered intercalation electrodes for the first time to fabricate a highly safe and flexible rechargeable hybrid Al3+/H+ battery. The as-fabricated hybrid-ion battery (HIB) delivers a high specific capacity of 125 mAh·g−1 at 0.1 A·g−1 and exhibits an unprecedented super long-term cycling stability with no capacity fading over 10,000 cycles at 2 A·g−1. In addition, the hydrogel-based electrolyte possesses smart function of thermoresponsive switching, which can effectively prevent thermal runaway for the batteries. The unprecedented long cycle stability, highly intrinsic safety as well as low-cost indicate that the flexible aqueous HIBs are promising for applications.

Volume 14
Pages 4154 - 4162
DOI 10.1007/s12274-021-3356-5
Language English
Journal Nano Research

Full Text