Applied Geomatics | 2021

Modeling of surface soil moisture using C-band SAR data over bare fields in the tropical semi-arid region of India

 
 
 

Abstract


Spatial variability of surface soil moisture is a prime factor in modeling many environmental and meteorological processes. This study aims to model surface soil moisture in bare fields using Sentinel-1A SAR data at a regional scale. The site/plot selected for the study falls in the tropical semi-arid region of Malavalli, Karnataka, India. The study site is divided into 43 grids to collect soil moisture samples from bare field plots synchronized with Sentinel-1A pass. Sentinel-1A, dual-polarized (VV and VH) data with 5.405-GHz frequency and central incidence angle of 33° are used. Six SAR imageries were procured from ESA, out of which five were used to model field soil moisture and one for validation. Processing of the SAR imageries is carried out using SNAP 7.0 software’s standard tools, and the backscattered energy of each sample grid is extracted using R software. The relation between SAR backscatter energy with soil parameters like moisture, dielectric constant, and roughness was used to model soil moisture. Results revealed that Sentinel-1A has a high potential to record the soil moisture spatial variation at the plot scale. Volumetric soil moisture and backscattered energy showed a positive correlation with R2 of 0.59 and 0.51 for VV and VH polarization. Dielectric constant also showed a positive correlation with backscattered energy having R2 of 0.54 and 0.48 for VV and VH polarization. With this knowledge, surface soil moisture is modeled over bare fields and mapped. Soil moisture modeled is validated using field data, which has R2 of 0.88 and RMSE of 1.93. The developed model and surface soil moisture map are helpful in regional hydrological studies and crop water requirement assessment.

Volume None
Pages 1 - 10
DOI 10.1007/s12518-021-00370-7
Language English
Journal Applied Geomatics

Full Text