Silicon | 2019

Design and Performance Analysis of Core-Shell Dual Metal-Dual Gate Cylindrical GAA Silicon Nanotube-TFET

 
 
 
 

Abstract


For experiencing phenomenon at nanoscale regimes, Nanotube FETs have been explored quite attentively due to their ever-increasing application in low power electronics. Nanotubes have a unique property of forming a Gate All around configuration, which imparts the device with appropriate electrostatic control and at the same time providing it with a superior exemption from short channel effects. In this letter, we have proposed a Hetero Metal (HM)-Dual Gate (DG) All around Core-Shell (CS) Nanotube (NT) TFET. Different metal work functions for both the core and shell gates have been employed and compared the proposed device with a Single Metal Gate All around configuration. The HM-DG NT-TFET yielded better analog and RF characteristics like better ION (2.68X10−6A/μm), improved ION/IOFF (4.66X1012) and Subthreshold slope (19 mV/dec). The proposed device showed almost identical Cgg when compared to the Single Metal (SM) NT-TFET although transconductance (gm) and unity gain frequency (fT) were found to be far better than Single-Metal GAA Configuration that indicates towards the device being a propitious candidate in RF circuits. The devices were also compared based on linear parameters for which the proposed device exhibited superior results.

Volume 12
Pages 2355 - 2363
DOI 10.1007/s12633-019-00329-9
Language English
Journal Silicon

Full Text