Silicon | 2021

Effect of 6 Wt.% Particle (B4C\u2009+\u2009SiC) Reinforcement on Mechanical Properties of AA6061 Aluminum Hybrid MMC

 
 
 
 

Abstract


Aluminum based hybrid metal matrix composite with more than two particle reinforcement is very much popular for heavy duty application, and the proportion of these particle reinforcement can be controlled to achieve desired mechanical properties (strength and wear resistance). AA 6061 alloys popularly used in aircraft and automobile applications, tends to have inferior tribological property and therefore particle reinforcements are being made to strengthen the matrix. The prime objective of this investigation is to study the effect of varying wt.% of proportionate individual reinforcement (SiC and B4C) on the mechanical properties of a particular composition (6 wt.%) of AA 6061 hybrid composite. The present investigation is done to evaluate the dependance of hard particle reinforcements on the strength and elongation behaviour of hybrid composite. Hardness measurement and uniaxial loading techniques were used to characterize the mechanical properties of the as-cast hybrid composites, whereas OM, XRD and SEM analysis was done to study the distribution of reinforcement within the base (AA 6061) metal matrix phase. The improvement in mechanical properties, such as Vickers hardness, UTS, yield strength and elongation were presented and explained using various hypothesis proposed by previous studies. The role of clustering theory and effect of binary eutectic Mg2Si phase found to be key the enhanced mechanical properties of the hybrid composites. Addition of Alkaline Earth Metal (Mg) during the synthesis process have led to an increase in the elongation of hybrid composite with the increase in wt.% of reinforcement which is analogous to the effect of alkali metals (‘Na’ and ‘Li’) addition that helps in refining the Mg2Si Eutectic phase.

Volume None
Pages 1 - 10
DOI 10.1007/s12633-021-01210-4
Language English
Journal Silicon

Full Text