Silicon | 2021

Numerical Simulation for Optimization of Ultra-thin n-type AZO and TiO2 Based Textured p-type c-Si Heterojunction Solar Cells

 
 

Abstract


A maximum efficiency of 17\u2009% for ultra-thin n-type AZO layer and 17.5\u2009% for ultra-thin n-type TiO2 layer based silicon heterojunction solar cell is reported by optimizing its properties which is much higher than practically obtained efficiency signifying a lot of improvements can be performed to improve efficiency of TiO2/Si and AZO/Si heterojunction solar cell. AZO layer and TiO2 layer is used as n-type emitter layer and crystalline silicon wafer is used as p-type (p-cSi) layer for modelling AZO/Si and TiO2/Si heterojunctions solar cell respectively using AFORS HET automat simulation software. Various parameters like thickness of AZO, TiO2 layer, p-cSi layer, doping concentration of donors (Nd) and effective conduction band density (Nc) are optimized. Finally, texturing at different angle is studied and maximum efficiency is reported at 70 μm thick p-type crystalline Silicon (p-cSi) wafer, that can be very helpful for manufacturing low cost HJ solar cells at industrial scale because of thin wafer and removal of additional processing setup required for deposition of amorphous silicon i-layer. Utilization of TiO2 and Aluminium doped Zinc Oxide as n-type layer and p-cSi as p-type layer can help in producing low cost and efficient heterojunction (HJ) than compared to HJ with intrinsic thin layer HIT solar cells.

Volume None
Pages 1 - 9
DOI 10.1007/s12633-021-01212-2
Language English
Journal Silicon

Full Text