Journal of Ambient Intelligence and Humanized Computing | 2021

Impact of autoencoder based compact representation on emotion detection from audio

 
 
 

Abstract


Emotion recognition from speech has its fair share of applications and consequently extensive research has been done over the past few years in this interesting field. However, many of the existing solutions aren’t yet ready for real time applications. In this work, we propose a compact representation of audio using conventional autoencoders for dimensionality reduction, and test the approach on two benchmark publicly available datasets. Such compact and simple classification systems where the computing cost is low and memory is managed efficiently may be more useful for real time application. System is evaluated on the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) and the Toronto Emotional Speech Set (TESS). Three classifiers, namely, support vector machines (SVM), decision tree classifier, and convolutional neural networks (CNN) have been implemented to judge the impact of the approach. The results obtained by attempting classification with Alexnet and Resnet50 are also reported. Observations proved that this introduction of autoencoders indeed can improve the classification accuracy of the emotion in the input audio files. It can be concluded that in emotion recognition from speech, the choice and application of dimensionality reduction of audio features impacts the results that are achieved and therefore, by working on this aspect of the general speech emotion recognition model, it may be possible to make great improvements in the future.

Volume None
Pages 1 - 19
DOI 10.1007/s12652-021-02979-3
Language English
Journal Journal of Ambient Intelligence and Humanized Computing

Full Text