Transactions of the Indian Institute of Metals | 2021

Characterization and Optimization of Slurry Erosion Behavior of SS 316 at Room Temperature

 
 
 
 
 
 
 

Abstract


Erosion is the most prominent issue in several engineering applications such as hydropower plants, steam/jet turbines, aircraft engines and chemical processing equipment. In the present study, slurry jet erosion tests were performed on the SS-316 with variation in impingement angle (30°, 90°), velocity (14.7, 30.6 m/s) and slurry concentration (0.5, 2.28%). SiO2 particles of size below 300 microns were used as the erodent. For this objective, design of experiments (DOE) approach utilizing Taguchi’s orthogonal arrays was selected to test the specimen on a slurry jet-type erosion test rig. A precision balance having least count of 0.1 mg was used to determine the mass loss of target material during the experiment. Analysis of variance (ANOVA) was applied to the measured erosion rate and surface roughness. Among all three control parameters, the impingement angle was found to be most significant parameter followed by impact velocity and solid particle concentration for both erosion rate and surface roughness. The scanning electron microscope (SEM) was used to analyze the worn-out surfaces. The multi-response optimizer indicating the optimum input parameter settings (angle: 90°, velocity: 14.7 m/s, concentration: 0.5%) will minimize erosion rate as well as surface roughness.

Volume 74
Pages 839 - 849
DOI 10.1007/s12666-020-02169-3
Language English
Journal Transactions of the Indian Institute of Metals

Full Text