Translational Stroke Research | 2019

Central Noradrenergic Agonists in the Treatment of Ischemic Stroke—an Overview

 
 

Abstract


Ischemic stroke is the leading cause of morbidity and mortality with a significant health burden worldwide and few treatment options. Among the short- and long-term effects of ischemic stroke is the cardiovascular sympathetic autonomic dysfunction, presented in part as the by-product of the ischemic damage to the noradrenergic centers of the brain. Unlike high levels in the plasma, the brain may face suboptimal levels of norepinephrine (NE), with adverse effects on the clinical and functional outcomes of ischemic stroke. The intravenous administration of NE and other sympathomimetic agents, in an attempt to increase cerebral perfusion pressure, often aggravates the ischemia-induced rise in blood pressure (BP) with life-threatening consequences for stroke patients, the majority of whom present with hypertension at the time of admission. Unlike the systemic administration, the central administration of NE reduces BP while exerting anti-inflammatory and neuroprotective effects. These characteristics of centrally administered NE, combined with the short latency of response, make it an ideal candidate for use in the acute phase of stroke, followed by the use of centrally acting noradrenergic agonists, such as NE reuptake inhibitors and B 2-adrenergic receptor agonists for stroke rehabilitation. In addition, a number of nonpharmacological strategies, such as transcutaneous vagus nerve stimulation (tVNS) and trigeminal nerve stimulation (TNS), have the potential to enhance the central noradrenergic functional activities and improve stroke clinical outcomes. Many factors could influence the efficacy of the noradrenergic treatment in stroke patients. These factors include the type of the noradrenergic agent; the dose, frequency, and duration of administration; the timing of administration in relation to the acute event; and the site and characteristics of the ischemic lesions. Having this knowledge, combined with the better understanding of the regulation of noradrenergic receptors in different parts of the brain, would pave the path for the successful use of the centrally acting noradrenergic agents in the management of ischemic stroke.

Volume 11
Pages 165-184
DOI 10.1007/s12975-019-00718-7
Language English
Journal Translational Stroke Research

Full Text