3 Biotech | 2021

Factors affecting antimonate bioreduction by Dechloromonas sp. AR-2 and Propionivibrio sp. AR-3

 
 
 
 
 
 

Abstract


The microbial reduction of antimonate (Sb(v)) to antimonite (Sb(iii)), which forms insoluble Sb compounds, is a promising approach to remove antimony (Sb) from wastewater. Among the bacterial strains capable of reducing Sb(v) via anaerobic respiration that have been isolated to date, Dechloromonas sp. AR-2 and Propionivibrio sp. AR-3 are promising agents because they can grow aerobically and reduce Sb(v) under both anaerobic and microaerobic conditions. In this study, the effects of temperature, pH, electron donors, and coexisting electron acceptors on Sb(v) reduction and Sb removal by strains AR-2 and AR-3 were investigated to assess the usefulness of the strains in practical Sb treatment scenarios. Efficient Sb(v) reduction and removal by the two strains occurred over a relatively wide temperature range (15–35 °C) and neutral pH (6–7). In contrast, the carbon sources usable by these strains as electron donors for Sb respiration were limited to simple fatty acids such as acetate and lactate. Although strain AR-2 used nitrate and AR-3 used nitrate and arsenate as electron acceptors for anaerobic respiration in addition to Sb(v), the co-presence of other electron acceptors did not inhibit Sb(v) reduction. These results suggest that strains AR-2 and AR-3 can be potentially used in the practical treatment of Sb(v)-containing wastewater.

Volume 11
Pages None
DOI 10.1007/s13205-021-02703-0
Language English
Journal 3 Biotech

Full Text