Macromolecular Research | 2021

Porous Zn(II)-Organic Framework with Tetrazolyl Decorated Pores for Selective C2H2 Adsorption and Treatment Activity on Infantile Meningitis

 
 
 
 

Abstract


Via applying a dual-functional tetrazolyl-carboxylic ligand 5-(1H-tetrazole-5-yl)-1,3-bis(3,5-dicarboxylphenyl)-benzene (H5TBDPB), a new Zn(II)-containing metal-organic framework (MOF) with the chemical composition of [Zn6(HTBDPB)3(H2O)6]·9DMF·15H2O (1) has been successfully prepared. This article methodically explored the gas sorption characteristics of activated 1 for C2H2, CO2, and CH4, and it holds a relative large C2H2 sorption capacity of 164.0 cm3 (STP) g−1 at 298 K and 1 bar with the C2H2/CH4 and C2H2/CO2 sorption selectivity of 34.8 and 4.6 at 298 K, respectively, revealing its potential application for the selective C2H2 adsorption. Additionally, we studied its application value on the infantile meningitis as well as the related mechanism was evaluated. The results of the bacteria growth curve automatic analysis indicated the compound could decrease the growth of Streptococcus meningitidis bacteria. Besides, the compound could also inhibit the survival genes expression in Streptococcus meningitidis in a dose-dependent manner. Molecular docking simulation has revealed that the carboxyl groups are the donor for the formed hydrogen bonds, while the tetrazole groups are the acceptor for the formed hydrogen bonds, such features make the Zn complex as an attractive candidate for infantile meningitis treatment.

Volume 29
Pages 605 - 612
DOI 10.1007/s13233-021-9071-y
Language English
Journal Macromolecular Research

Full Text