Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics | 2021

Neuroprotection of Exendin-4 by Enhanced Autophagy in a Parkinsonian Rat Model of α-Synucleinopathy.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Glucagon-like peptide-1 (GLP-1) receptor stimulation ameliorates parkinsonian motor and non-motor deficits in both experimental animals and patients; however, the disease-modifying mechanisms of GLP-1 receptor activation have remained unknown. The present study investigated whether exendin-4 (a GLP-1 analogue) can rescue motor deficits and exert disease-modifying effects in a parkinsonian rat model of α-synucleinopathy. This model was established by unilaterally injecting AAV-9-A53T-α-synuclein into the right substantia nigra pars compacta, followed by 4 or 8 weeks of twice-daily intraperitoneal injections of exendin-4 (5\xa0μg/kg/day) starting at 2 weeks after AAV-9-A53T-α-synuclein injections. Positron emission tomography/computed tomography (PET/CT) scanning and immunostaining established that treatment with exendin-4 attenuated tyrosine-hydroxylase-positive neuronal loss and terminal denervation and mitigated the decrease in expression of vesicular monoamine transporter 2 within the nigrostriatal dopaminergic systems of rats injected with AAV-9-A53T-α-synuclein. It also mitigated the parkinsonian motor deficits assessed in behavioral tests. Furthermore, through both in vivo and in vitro models of Parkinson s disease, we showed that exendin-4 promoted autophagy and mediated degradation of pathological α-synuclein, the effects of which were counteracted by 3-methyladenine or chloroquine, the autophagic inhibitors. Additionally, exendin-4 attenuated dysregulation of the PI3K/Akt/mTOR pathway in rats injected with AAV-9-A53T-α-synuclein. Taken together, our results demonstrate that exendin-4 treatment relieved behavioral deficits, dopaminergic degeneration, and pathological α-synuclein aggregation in a parkinsonian rat model of α-synucleinopathy and that these effects were mediated by enhanced autophagy via inhibiting the PI3K/Akt/mTOR pathway. In light of the safety and tolerance of exendin-4 administration, our results suggest that exendin-4 may represent a promising disease-modifying treatment for Parkinson s disease.

Volume None
Pages None
DOI 10.1007/s13311-021-01018-5
Language English
Journal Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics

Full Text