Journal of The American Society for Mass Spectrometry | 2019

Structural and Energetic Effects of O2′-Ribose Methylation of Protonated Pyrimidine Nucleosides

 
 
 
 
 
 
 
 
 
 
 
 

Abstract


The 2′-substituents distinguish DNA from RNA nucleosides. 2′-O-methylation occurs naturally in RNA and plays important roles in biological processes. Such 2′-modifications may alter the hydrogen-bonding interactions of the nucleoside and thus may affect the conformations of the nucleoside in an RNA chain. Structures of the protonated 2′-O-methylated pyrimidine nucleosides were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy, assisted by electronic structure calculations. The glycosidic bond stabilities of the protonated 2′-O-methylated pyrimidine nucleosides, [Nuom+H]+, were also examined and compared to their DNA and RNA nucleoside analogues via energy-resolved collision-induced dissociation (ER-CID). The preferred sites of protonation of the 2′-O-methylated pyrimidine nucleosides parallel their canonical DNA and RNA nucleoside analogues, [dNuo+H]+ and [Nuo+H]+, yet their nucleobase orientation and sugar puckering differ. The glycosidic bond stabilities of the protonated pyrimidine nucleosides follow the order: [dNuo+H]+ < [Nuo+H]+ < [Nuom+H]+. The slightly altered structures help explain the stabilization induced by 2′-O-methylation of the pyrimidine nucleosides.

Volume 30
Pages 2318 - 2334
DOI 10.1007/s13361-019-02300-9
Language English
Journal Journal of The American Society for Mass Spectrometry

Full Text