Complex & Intelligent Systems | 2021

A hybrid deep kernel incremental extreme learning machine based on improved coyote and beetle swarm optimization methods

 
 
 

Abstract


The iteration times and learning efficiency of kernel incremental extreme learning machines are always affected by the redundant nodes. A hybrid deep kernel incremental extreme learning machine (DKIELM) based on the improved coyote and beetle swarm optimization methods was proposed in this paper. A hybrid intelligent optimization algorithm based on the improved coyote optimization algorithm (ICOA) and improved beetle swarm optimization algorithm (IBSOA) was proposed to optimize the parameters and determine the number of effectively hidden layer neurons for the proposed DKIELM. A Gaussian global best-growing operator was adopted to replace the original growing operator in the intelligent optimization algorithm to improve COA searching efficiency and convergence. In the meantime, IBSOA was designed based on tent mapping inverse learning and dynamic mutation strategies to avoid falling into a local optimum. The experimental results demonstrated the feasibility and effectiveness of the proposed DKIELM with encouraging performances compared with other ELMs.

Volume None
Pages None
DOI 10.1007/s40747-021-00486-8
Language English
Journal Complex & Intelligent Systems

Full Text