Stress Biology | 2021

Roles of small RNAs in crop disease resistance

 
 
 
 

Abstract


Small RNAs (sRNAs) are a class of short, non-coding regulatory RNAs that have emerged as critical components of defense regulatory networks across plant kingdoms. Many sRNA-based technologies, such as host-induced gene silencing (HIGS), spray-induced gene silencing (SIGS), virus-induced gene silencing (VIGS), artificial microRNA (amiRNA) and synthetic trans-acting siRNA (syn-tasiRNA)-mediated RNA interference (RNAi), have been developed as disease control strategies in both monocot and dicot plants, particularly in crops. This review aims to highlight our current understanding of the roles of sRNAs including miRNAs, heterochromatic siRNAs (hc-siRNAs), phased, secondary siRNAs (phasiRNAs) and natural antisense siRNAs (nat-siRNAs) in disease resistance, and sRNAs-mediated trade-offs between defense and growth in crops. In particular, we focus on the diverse functions of sRNAs in defense responses to bacterial\xa0and fungal\xa0pathogens, oomycete and virus in crops. Further, we highlight the application of sRNA-based technologies in protecting crops from pathogens. Further research perspectives are proposed to develop new sRNAs-based efficient strategies to breed non-genetically modified (GMO), disease-tolerant crops for sustainable agriculture.

Volume None
Pages None
DOI 10.1007/s44154-021-00005-2
Language English
Journal Stress Biology

Full Text