Applied Catalysis B-environmental | 2021

Plasmon-enhanced alcohol oxidations over porous carbon nanosphere-supported palladium and gold bimetallic nanocatalyst

 
 
 
 
 
 
 
 
 
 
 

Abstract


Abstract Plasmonic catalysis is a sustainable catalytic process to drive the conventional catalytic reactions under ambient conditions by solar energy. Here, we report a porous carbon nanosphere-supported bimetallic nanocatalyst (Pd-Au/MCN) which exhibits upgraded performance in the oxidation of alcohol under irradiation of light compared to the conventional heating processes and the single metal catalysts (Pd/MCN). The Pd-Au bimetallic nanocatalyst combines photo-active Au nanoparticles, reaction-active Pd nanoparticles, and solar-adsorbing carbon nanospheres. Compared to the alcohol oxidation on Pd/MCN catalyst, Pd-Au/MCN catalyst exhibits almost 5 times higher catalytic activities in the oxidation of 2-Phenylethan-1-ol and 1-Phenylethan-1-ol, and 3 times higher activities in the oxidation of cinnamyl alcohol and 3-methoxybenzyl alcohol under light irradiation at 30 °C in water in the absence of a base. Moreover, the bimetallic nanocatalysts were able to be recovered and recycled 5 times without any obvious loss in catalytic activity.

Volume 292
Pages 120151
DOI 10.1016/J.APCATB.2021.120151
Language English
Journal Applied Catalysis B-environmental

Full Text