Applied Geochemistry | 2019

An active microbial community in Boom Clay pore water collected from piezometers impedes validating predictive modelling of ongoing geochemical processes

 
 
 
 
 
 
 
 
 

Abstract


Abstract Safe geological disposal of radioactive waste requires a detailed understanding of the geochemical conditions present in the host formation. Consequently, analysis of pore water is essential, as its composition determines among others, the speciation and solubility of radionuclides. Boom Clay is considered a potential host formation in Belgium. Although the elemental composition of Boom Clay pore water is relatively well known, the real mechanisms controlling the pCO2 (g) and the pH, the two most important parameters, are not completely understood. Currently, these parameters are under investigation based only on inorganic chemistry. Borehole waters of different Underground Research Facilities (URF) harbour an active microbial community; however, their possible impact on the geochemistry of Boom Clay pore water extracted from piezometers is not yet examined. The present study discusses the evolution of the geochemistry and the microbial community in the pore water from the piezometers around the PRACLAY gallery of the HADES URF during 7 years after installation of the piezometers. Overall, the elemental composition seemed to vary during the first 4 years, while afterwards it remained quite stable. However, the pCO2 values varied substantially over time, while the pCH4 increased in all filters. The presence of an active microbial community in the piezometers, could explain why experimental pCO2 – pH data do not correspond to the data obtained by predictive modelling, hampering validation of current predictive models of the ongoing geochemical processes. Moreover, the nature of the sampling equipment and the sampling procedure possibly stimulated the present microbial community, resulting in increased methane production rates. To improve predictive modelling, microbial processes are needed to be taken into account together with inorganic geochemistry considered at the current stage, which necessitates detailed microbial and geochemical monitoring in future studies.

Volume 106
Pages 149-160
DOI 10.1016/J.APGEOCHEM.2019.05.009
Language English
Journal Applied Geochemistry

Full Text