Applied Mathematical Modelling | 2021

Electro-thermo-mechanical post-buckling of piezoelectric functionally graded cylindrical shells

 
 
 
 
 
 

Abstract


Abstract Unlike the widely used eigen-buckling theory, the nonlinear post-buckling analysis provides a more accurate stability model of piezoelectric cylindrical shells and predicates more reliable instability characteristics. In this paper, an accurate post-buckling analysis of piezoelectric functionally graded cylindrical shells under combined electro-thermo-mechanical loadings is performed. The nonlinear large deflection governing equations involving the self-induced electric potential are established based on the higher-order shear deformation theory. The post-buckling equilibrium paths with mode-jumping phenomenon for both symmetric and asymmetric deformation modes are obtained by the Galerkin s method enriched with new displacement functions. Results indicate that the symmetric mode usually occurs for a thick shell and the asymmetric mode only occurs for an ultrathin shell. Furthermore, it is demonstrated that the effect of power law index highly depends on the external electro-thermal loadings. Therefore, the loading capacity of the piezoelectric FG cylindrical shells can be improved by an appropriately selected power law index.

Volume 98
Pages 309-322
DOI 10.1016/J.APM.2021.05.011
Language English
Journal Applied Mathematical Modelling

Full Text