Applied Ocean Research | 2019

Feedback control system for blow-out preventer positioning

 
 

Abstract


Abstract During the drilling of ultra-deep-water subsea petroleum wells, a blow-out preventer (BOP), a piece of safety equipment, must be assembled on the wellhead. The BOP is suspended using the drilling riser during the wellhead approach operation, and the riser s top end is connected to the floating platform rig. This article presents a feedback control system for the automatic approach of the BOP to the wellhead. Compared to state-of-the-art controls, ours does not require ancillary thrusters installed alongside the riser nor inclination sensors atop of the drilling riser. Additionally, our proposed control embeds a closed-loop dynamic positioning system, thus retaining the characteristics of the original control system and adding an extra closed-loop. This eases implementation of the BOP approach control to an existing platform. To calculate the optimal gains for the BOP controller, we assume a linear system for the riser, including only the pendulum-shape. The simulation is carried out using nonlinear models for both riser and floating platform. We assume an International Towing Tank Conference standard semi-submersible platform, coupled with a 3000-m free-hanging vertical riser for the time-domain simulation. The results show the BOP tracking to be a step-shaped input signal under current and wave loads. A discussion of the performance of feedback control under different environmental loads is also included.

Volume 82
Pages 362-369
DOI 10.1016/J.APOR.2018.11.013
Language English
Journal Applied Ocean Research

Full Text