Applied Surface Science | 2019

Pd-doped MoS2 monolayer: A promising candidate for DGA in transformer oil based on DFT method

 
 
 
 
 

Abstract


Abstract Density functional theory (DFT) method was carried out to simulate the adsorption of three dissolved gases on Pd-doped MOS2 (Pd-MoS2) monolayer. We initially studied the possible structures of Pd-MoS2 monolayer and found that the Pd dopant preferred to be adsorbed onto the surface by TMo site. The adsorption and desorption performance, along with the sensing principle of Pd-MoS2 towards three typical gases, including H2, CH4 and C2H2, were analyzed. These analysis indicated that Pd-MoS2 could be a satisfied material for C2H2 and H2 sensing at specific condition; while it is unsuitable for detection of CH4 due to the weak interaction and extremely short recovery time. All these give a first insight into the application of Pd-MoS2 for DGA, evaluating the working operation of the transformer through sensitive detection of H2 and C2H2. We are hopeful that this work would support informative knowledge for experimentalists to realize the potential of Pd-MoS2 in the field of electrical engineering in the near future.

Volume 470
Pages 1035-1042
DOI 10.1016/J.APSUSC.2018.11.230
Language English
Journal Applied Surface Science

Full Text