Advanced Powder Technology | 2019

Investigation of the molecular state of 4-aminosalicylic acid in matrix formulations for dry powder inhalers using solid-state fluorescence spectroscopy of 4-dimethylaminobenzonitrile

 
 
 
 
 

Abstract


Abstract Carrier-free method is an alternative approach for dry powder inhaler (DPI) formulations, which overcome poor drug mobility and distribution. Here we investigated the properties of an active pharmaceutical ingredient (API) within composite particles. We used highly-branched cyclic dextrin (HBCD) as the excipient matrix that was prepared using a spray-drying technique. 4-Aminosalicylic acid (4-ASA) and 4-dimethylaminobenzonitrile (DMABN) were selected as a hydrophilic second-line antitubercular agent and a surrogate for 4-ASA as a model compound, respectively. The spray-dried particles (SDPs) containing 4-ASA or DMABN with HBCD had geometric median diameters (D50) of 2.34\u202f±\u202f0.07\u202fμm and 2.26\u202f±\u202f0.10\u202fμm, respectively. Further, the in vitro aerodynamic properties were similar for SDPs containing 4-ASA and DMABN with HBCD. To determine the properties of APIs within composite particles, we performed solid-state fluorescence spectroscopy of DMABN. As a candidate excipient, hydroxypropyl methylcellulose (HPMC) was compared to HBCD. We determined the intensity ratio of twisted intramolecular charge transfer (TICT) emission to locally excited emission within the excipient matrix environment. The HBCD matrix environment was better than HPMC to trigger a more robust TICT reaction of DMABN. A potent state-changing interaction of APIs occurred in the HBCD matrix environment versus another excipient environment.

Volume 30
Pages 2422-2429
DOI 10.1016/J.APT.2019.07.027
Language English
Journal Advanced Powder Technology

Full Text