Biomed. Signal Process. Control. | 2021

Computer aided diagnosis system using deep convolutional neural networks for ADHD subtypes

 
 
 
 

Abstract


Abstract Background Attention deficit hyperactivity disorder (ADHD) is a ubiquitous neurodevelopmental disorder affecting many children. Therefore, automated diagnosis of ADHD can be of tremendous value. Unfortunately, unlike many other applications, the use of deep learning algorithms for automatic detection of ADHD is still limited. Method In this paper, we proposed a novel computer aided diagnosis system based on deep learning approach to classify the EEG signal of Healthy children (Control) from ADHD children with two subtypes of Combined ADHD (ADHD-C) and Inattentive ADHD (ADHD-I). Inspired by the classical approaches, we proposed a deep convolutional neural network that is capable of extracting both spatial and frequency band features from the raw electroencephalograph (EEG) signal and then performing the classification. Result We achieved the highest classification accuracy with the combination of β1, β2, and γ bands. Accuracy Recall, Precision, and Kappa values were %99.46, %99.45, %99.48, and 0.99, respectively. After investigating the spatial channels, we observed that electrodes in the Posterior side had the most contribution. Conclusions To the best of our knowledge, all previous multiclass studies were based on fMRI and MRI imaging. Therefore, the presented research is novel in terms of using a deep neural network architecture and EEG signal for multiclass classification of ADHD and healthy children with high accuracy.

Volume 63
Pages 102227
DOI 10.1016/J.BSPC.2020.102227
Language English
Journal Biomed. Signal Process. Control.

Full Text