Chinese Chemical Letters | 2021

Role of biochar surface characteristics in the adsorption of aromatic compounds: pore structure and functional groups

 
 
 
 
 
 
 

Abstract


ABSTRACT Biochar (BC) are widely used as highly efficient adsorbents to alleviate aromatics-based contaminants due to their ease of preparation, wide availability, and high sustainability. The surface properties of BCs usually vary greatly due to their complex chemical constituents and different preparation processes and are reflected in the values of parameters such as the specific surface area (SSA), pore volume/size, and surface functional groups (SFGs). The effects of SSA and pore volume/size on the adsorption of aromatics have been widely reported. However, the corresponding mechanisms of BC SFGs towards aromatics adsorption remains unclear as the compositions of the SFGs are usually complex and hard to determine. To address in this gap in the literature, this review introduces a new perspective on the adsorption mechanisms of aromatics. Through collecting previously-reported results, the parameters logP (logarithm of the Kow), polar surface area, and the positive/negative charges were carefully calculated using ChemDraw 3D, which allowed the hydrophobicity/hydrophilicity properties, electron donor-acceptor interactions, H-bonding, and electrostatic interactions between SFGs and aromatics-based contaminates to be inferred intuitively. These predictions were consistent with the reported results and showed that tailor-made BCs can be designed according to the molecular weights, chemical structures, and polarities of the target aromatics. Overall, this review provides new insight into predicting the physicochemical properties of BCs through revealing the relationship between SFGs and adsorbates, which may provide useful guidance for the preparing of highly-efficient, functional BCs for the adsorption of aromatics

Volume None
Pages None
DOI 10.1016/J.CCLET.2021.04.059
Language English
Journal Chinese Chemical Letters

Full Text