Ceramics International | 2019

Binder jetting additive manufacturing of aluminum nitride components

 
 
 
 
 
 
 

Abstract


Abstract In this work, we report on the novel fabrication of aluminum nitride (AlN) components using Binder Jetting (BJT) additive manufacturing (AM). The AlN constructs were subjected to post-fabrication thermal treatment by hot isostatic pressing (HIPing) for 8 hours at a pressure of 206 MPa and temperature of 1900 °C. This treatment resulted in a 60.1% relative density maximum densification for AlN. The BJT printed AlN specimens were analyzed using various characterization techniques. The purity, microstructure, and polycrystallinity of the AlN phase formed were confirmed by techniques that included x-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), and high-resolution transmission electron microscopy (HRTEM). Second harmonic generation (SHG) microscopy showed polarization dependence and second harmonic signal at 470 nm, indicating the potential to produce thermal and optical-mechanical devices. Mechanical properties obtained by nanoindentation resulted in an elastic modulus of ~251 GPa when measured in fully dense, contiguous crystalline regions, corresponding to an apparent, porous bulk stiffness of ~90 GPa for the final, 60.1 % dense products. Finally, the laser flash method (LFM) was used to measure the thermal conductivity of the material as a function of temperature resulting in values from 4.82\u202fW/mK to 3.17\u202fW/mK for the temperature range from 23\u202f°C to 500\u202f°C, respectively.

Volume 45
Pages 13620-13627
DOI 10.1016/J.CERAMINT.2019.03.187
Language English
Journal Ceramics International

Full Text