Ceramics International | 2021

Pseudo n-type behaviour of nickel oxide thin film at room temperature towards ammonia sensing

 
 
 
 
 
 
 
 

Abstract


Abstract Sensors are part of a safe laboratory, working space and closed environment. In view of this, a sensing material for ammonia (NH3) vapour, nickel oxide (NiO) has been investigated to improve its quality as a sensor. The transparent nanostructured NiO thin films were deposited on glass substrates by sol-gel spin coating method at different molar concentrations (0.4\xa0M, 0.6\xa0M and 0.8\xa0M). The NH3 sensing studies reveal that 0.6\xa0M film shows admirable response of 403 (75 ppm), and also it has good response and recovery times (110\xa0s and 33 s) for 25 ppm\xa0at room temperature. These features of the film are attributed to low surface roughness, small grain size and higher surface to volume ratio compared to other films. In presence of air ambience, the electrons at film surface are chemisorbed by oxygen molecules and thereby cause an increase of the depletion layer. Once the film is exposed to the analyte gas NH3, the depletion layer decreases because of electrons returning back to the conduction band (CB). These electrons are then de-excited to the valence band (VB) and recombine with holes (annihilation of holes). At the same time, the trapping of electrons by Ni(OH)2 and creation of holes by oxidation of Ni2+ into Ni3+ increases the hole concentration at VB, followed by a reduction of recombination rate of electrons and holes. All these processes decrease the potential barrier between the grains and thereby cause the Fermi level (EF) to shift towards VB. These processes remarkably enhance the sensing behaviour of the film. Importantly, the prepared NiO thin film behaves as a n-type sensor at room temperature for NH3; and therefore, termed as pseudo-n-type.

Volume 47
Pages 13693-13703
DOI 10.1016/J.CERAMINT.2021.01.230
Language English
Journal Ceramics International

Full Text