Ceramics International | 2021

Multispectral photodetection using low-cost sputtered NiO/Ag/ITO heterostructure: From design concept to elaboration

 
 
 
 
 

Abstract


Abstract High-performance multispectral photodetectors (PDs) are highly attractive for the emerging optoelectronic applications. In this work, a new broadband PD based on p-NiO/Ag/n-ITO heterostructure was fabricated by RF magnetron sputtering technique at room temperature. The tri-layered structure offering multispectral detection property was first identified using theoretical calculations based on combined FDTD and Particle Swarm Optimization (PSO) techniques. The crystal structure of the elaborated sensor was analyzed using X-ray diffraction (XRD) method. The device optical properties were investigated by UV–Vis–NIR spectroscopy. The NiO/Ag/ITO heterostructured PD shows a high average absorbance of 63% over a wide spectrum range of [200\xa0nm–1100nm]. Compared with NiO and ITO thin-films, the performances of the heterostructured device are considerably enhanced. It was found that the prepared PD with NiO/Ag/ITO heterostructure merges the benefits of multispectral photodetection with reduced optical losses and efficient transfer of photo-induced carrier. The device demonstrated a high ION/IOFF ratio of 78\xa0dB and an enhanced responsivity under UV, visible and NIR lights (171\xa0mA/W at 365\xa0nm, 67\xa0mA/W at 550\xa0nm and 93\xa0mA/W at 850\xa0nm). The broadband photodetection property enabled by the optimized NiO/Ag/ITO heterostructure opens a new route for the elaboration of low-cost devices that can offer multiple sensing purposes, which are highly suitable for optoelectronic applications.

Volume None
Pages None
DOI 10.1016/J.CERAMINT.2021.02.141
Language English
Journal Ceramics International

Full Text