Chinese Journal of Chemical Engineering | 2021

Innovative hydrophobic/hydrophilic perfluoropolyether (PFPE)/polyvinylidene fluoride (PVDF) composite membrane for vacuum membrane distillation

 
 
 
 
 
 
 
 
 
 

Abstract


Abstract Though membrane distillation (MD) has gained more and more attention in the field of desalination, the wetting phenomenon was still a non-negligible problem. In this work, a method combined dip-coating and UV in situ polymerization for preparing hydrophobic/hydrophilic perfluoropolyether (PFPE)/polyvinylidene fluoride composite membranes. This composite membrane consisted of a top thin hydrophobic coating layer and hydrophilic substrate membrane. In terms of anti-wetting properties, contact angle and liquid entry pressure of all composite membranes (except for those based on 0.45 μm) exceeded 160o and 0.3 MPa, respectively. In particular, the desalination performance was tested in vacuum membrane distillation tests by feeding 3.5% (mass) saline solution (NaCl) at 60 oC. The composite membranes with larger support pore size and lower PFPE content had higher membrane distillation flux. And for stability tests (testing the 0.22 μm membrane coated by 5% (mass) PFPE), the highest MD flux 29.08 kg·m–2·h–1 and stable salt rejection (over 99.99%) during the period. Except that, the effects of coating material concentration and pore sizes of substrate membrane were also investigated for surface morphology and topography, porosity, mechanical strength and pore size characteristics. This work provided a simple and effective alternative to prepare excellent hydrophobic composite membranes for MD applications.

Volume None
Pages None
DOI 10.1016/J.CJCHE.2021.03.018
Language English
Journal Chinese Journal of Chemical Engineering

Full Text