Composites Part B-engineering | 2019

Effective behavior of composites with combined kinematic and isotropic hardening based on additive tangent Mori–Tanaka scheme



Abstract The goal of the present work is to propose a multi-scale approach for composite materials which accounts for kinematic hardening in the phases. For that purpose, the additive/sequential interaction rule and tangent linearization of viscoplastic response proposed for elastic–viscoplastic material can be extended in a straightforward manner. A two phase composite where each phase is elastic–viscoplastic is considered. The viscoplastic flow is governed by a J 2 flow theory with an overstress. To find the overall behavior of the composite, a Mori–Tanaka model is applied. Numerical validation of the proposition is carried out by considering a representative volume element with 30 inclusions. Various configurations have been tested: hard or soft inclusion cases with or without isotropic hardening. It is shown that the quality of the model predictions is not affected by the introduction of the kinematic hardening component in the local constitutive behavior. Namely, in most cases considered in the paper the overall stress–strain response as well as the average stress–strain response per phase is accurately estimated. It has been also verified that the obtained backstress components are consistent with the ones predicted by Finite element calculations with ABAQUS Software.

Volume 174
Pages 107052
DOI 10.1016/J.COMPOSITESB.2019.107052
Language English
Journal Composites Part B-engineering

Full Text