Engineering Structures | 2019

Buckling of aboveground storage tanks subjected to storm surge and wave loads

 
 

Abstract


Abstract This study investigates the buckling behavior of aboveground storage tanks (ASTs) subjected to storm surge and wave loads during hurricane events and explores the importance of dynamic effects on the buckling behavior. First, a computational fluid dynamics model is developed to estimate water pressures on ASTs subjected to wave loads. The modeling assumptions of this model are also validated with experimental data. Next, a methodology is presented to perform dynamic buckling analysis of ASTs subjected to surge and wave loads by adapting procedures commonly used for ASTs subjected to wind or seismic loads; the methodology is illustrated with a case study AST located in the Houston Ship Channel. For comparison, static buckling analyses are also performed to determine the significance of dynamic effects. Lastly, design of experiments principles and regression analyses are employed to investigate the effects of varying AST and loading parameters on the buckling behavior and the relative importance of dynamic effects. Results indicate that wave loads can significantly affect the buckling behavior of ASTs subjected to storm surge and need to be considered, while the dynamic effects induced by waves have a negligible influence on the buckling strength of ASTs. Simpler and computationally inexpensive static buckling analysis provides reasonable estimates for ASTs subjected to surge and waves. However, dynamic buckling analysis might still be required if the objective is to assess the post-buckling behavior of ASTs subjected to waves, rather than only to estimate the critical load.

Volume 197
Pages 109388
DOI 10.1016/J.ENGSTRUCT.2019.109388
Language English
Journal Engineering Structures

Full Text