Engineering Structures | 2021

Effect of negative Poisson’s ratio on the postbuckling behavior of pressure-loaded FG-GRMMC laminated cylindrical shells

 
 

Abstract


Abstract Auxetic materials have emerged to be a new type of novel engineering materials with unique material properties. This paper reports the postbuckling behaviors of pressure loaded graphene-reinforced metal matrix composite (GRMMC) laminated cylindrical shells under the influence of in-plane negative Poisson’s ratio (NPR) in temperature environments. The GRMMCs have temperature-dependent material properties which can be determined using an extended micromechanical model of Halpin–Tsai type. A cylindrical shell is made of GRMMC layers of different graphene volume fractions to achieve a piece-wise functionally graded (FG) pattern. The postbuckling equations for the pressure-loaded GRMMC laminated cylindrical shells are derived using the Reddy’s third order shear deformation shell theory with the effects of von Karman-type kinematic nonlinearity and temperature variation being included. Applying the singular perturbation technique in conjunction with a two-step perturbation approach, the governing equations for the shell postbuckling problem are solved. The results show that the postbuckling behaviors of pressure-loaded GRMMC laminated cylindrical shells are affected substantially by the in-plane NPR.

Volume 243
Pages 112458
DOI 10.1016/J.ENGSTRUCT.2021.112458
Language English
Journal Engineering Structures

Full Text