Food research international | 2021

Microwave treatment enhances human gut microbiota fermentability of isolated insoluble dietary fibers.

 
 
 
 
 
 

Abstract


Most insoluble dietary fibers are known to be relatively poorly fermented by the human gut microbiota. Here, the potential of microwave (MW) treatment to enhance the susceptibility of insoluble fruit polysaccharides to fermentation by the human gut microbiota was evaluated. Insoluble fruits dietary fibers before (xylan A, xylan T, and arabinan) and after MW (xylan A-MW, xylan T-MW, and arabinan-MW) treatment were fermented using an in vitro fermentation model. Gas production, shifts in pH, and short chain fatty acids (SCFAs) production showed an increase in fermentability of all tested dietary fibers, with an average 4-fold increase in SCFAs production after microwaving with total SCFAs ranging from 17.1 mM in the arabinan-MW to 40.4 mM in the xylan T-MW. While arabinan-MW and xylan T-MW promoted all three SCFAs proportionally (acetate:propionate:butyrate), xylan A-MW led to a marked and slow increase in butyrate reaching 28.1% of total SCFAs at 24\xa0h. Rearrangements in three-dimensional structure that potentially facilitate bacterial accessibility to the dietary fiber were observed by scanning electron microscopy in xylan A-MW, forming coin-like particles with ~1.1\xa0µm diameter. 16S rRNA gene sequencing indicated that microbiota shifts were related to both treatment (native versus MW) and dietary fiber type with many butyrogenic species being promoted by xylan A-MW. Overall, MW treatment enhanced insoluble dietary fiber fermentability promoting increased SCFAs production and bacterial shifts which are related to health benefits.

Volume 143
Pages \n 110293\n
DOI 10.1016/J.FOODRES.2021.110293
Language English
Journal Food research international

Full Text