Green Energy & Environment | 2021

High tension cyclic hydrocarbons synthesized from biomass-derived platform molecules for aviation fuels in two steps

 
 
 
 
 

Abstract


Abstract Synthesizing ring structure aviation fuels from biomass-derived platform molecules is challenging, especially for bridged ring structure aviation fuels which are typically achieved from fossil-derived chemicals. Herein, we report the synthesis of a series of ring structure biofuels in two steps by a combination of a solvent-free Michael-cyclization reaction and a hydrodeoxygenation (HDO) reaction from lignocellulose-derived 5,5-dimethyl-1,3-cyclohexanedione. These biofuels are obtained with high overall yields up to 90%, which exhibit high densities of 0.81 g cm-3-0.88 g cm-3 and high volumetric neat heat of combustion (VNHOC) values of 36.0 MJ L-1-38.6 MJ L-1. More importantly, bridged-ring structure hydrocarbons can also be achieved in two steps by a combination of a Robinson annulation reaction and an HDO reaction to afford the final products at high overall yields up to 90%. The bridged-ring structure products have comparable high densities and high VNHOC values to the best artificial fuel JP-10 (0.94 g cm-3 and 39.6 MJ L-1). The results demonstrate a promising way for the synthesis of high-density aviation fuels with different fuel properties at high yields.

Volume None
Pages None
DOI 10.1016/J.GEE.2021.04.012
Language English
Journal Green Energy & Environment

Full Text