Geoderma | 2021

The effect of tillage management on microbial functions in a maize crop at different slope positions

 
 
 
 
 
 
 

Abstract


Abstract Determining whether agricultural soils act as sinks or sources of greenhouse gases (GHGs) requires the quantification of variations in the pools and fluxes of soil organic carbon (SOC) and nutrients, e.g. nitrogen (N), as well as the associated soil microbial responses. In this study, soil was collected from experimental plots of maize (Zea mays) under conventional, minimum or strip tillage treatments established in a sloping field (~10%) of loamy soil in SW England, UK, where maize had been cultivated conventionally for 12\xa0years. Topsoil (0–10\xa0cm) cores were collected from the top, mid, bottom and foot slope positions to investigate soil C, N and microbial properties. The impact of conventional management on potential GHG emissions was assessed by incubating soils collected from the top, mid and bottom slope positions from the conventional treatment. Contents of SOC and total N were greatest at the top slope position and soil mineral N (NO3−-N and NH4+-N) concentrations were greater at the bottom and foot slope positions in all treatments. Biomarker phospholipid fatty acids (PLFA) for Gram positive bacteria and fungi were relatively 13C-enriched at each slope position regardless of treatment, indicating preferential utilization of organic matter from maize (C4) rather than SOC (C3). Around 70% of carbon incorporated into total PLFA was derived from C3-SOC at the slope foot, indicating that more SOC older than 12\xa0years was being mineralized at the depositional position. Effluxes of N2O and CO2, and total GHG emission were greatest from the incubated soils sampled from the bottom slope position, suggesting that conditions in depositional positions of regularly ploughed sloping arable fields may have increased the potential for mineralization and denitrification. We conclude that the C sink potential of the depositional positions of slopes may be diminished by coincidental GHG emissions.

Volume 401
Pages 115171
DOI 10.1016/J.GEODERMA.2021.115171
Language English
Journal Geoderma

Full Text