Geomorphology | 2021

Complex patterns of schist tor exposure and surface uplift, Otago (New Zealand)

 
 
 
 
 
 

Abstract


Abstract Landscapes are subjected to surface denudation during their complex and non-linear evolution. In order to quantify the in situ surface lowering and, thus, denudation or soil erosion rates, new, multi-millennia archives are needed and must be rigorously tested. Large residual rocks, tors, are the basis for the Tor Exhumation Approach. Here we present novel results on meta-sedimentary (schist) rock tors using this approach, which previously has only been applied in granitic terrains. The exhumation patterns of eight schist tors in three landscape locations (valley, ridge, distal) of Otago, New Zealand, were studied using cosmogenic dating. The in situ 10Be ages have high variability along individual vertical tor profiles. Average surface age is 122\u202f±\u202f12\u202fka and ranges from 836\u202f±\u202f89\u202fka to 19\u202f±\u202f2\u202fka. The majority of investigated tors have surfaced during the MIS 5 which was one of the wettest and warmest climate periods. The resulting surface denudation trend of the three locations differs. The valley commenced denudation no earlier than ~200\u202fka with rates of ~0.22 [m kyr−1] to ~0.02 [m kyr−1]. In contrast, exposure started at the ridge position around 230\u202fka at ~0.03 [m kyr−1]. An age inversion found in the valley is considered to be the result of mushroom-like exposure by undercutting and repeated rock breakoffs. The distal site tor has been exhumed continuously for ~120\u202fka at a rate of ~0.2 to ~0.05 [m kyr−1]. We identified a mix of surface emergence patterns of the tors such as continuous-, mushroom-, tafoni- and structural-like. The comparison to modern erosion rates indicates that surface erosion has increased up to a factor of ten during the last few decades. To determine the actual surface uplift, we linked the tor derived surface denudation rates with rock uplift data. The data indicates that the surface uplift rates started to decrease during the Middle Pleistocene (0.04–0.09 [m kyr−1]), remained relatively low during the Late Pleistocene (~0.01 [m kyr−1]) and started to increase again during the Holocene (c. 0.21–0.64 [m kyr−1]). In summary, the emergence pattern of local tors enabled reconstruction of the evolution of Pleistocene-Holocene surfaces in East Otago.

Volume 389
Pages 107849
DOI 10.1016/J.GEOMORPH.2021.107849
Language English
Journal Geomorphology

Full Text