Geotextiles and Geomembranes | 2021

Influence of bio-clogging on permeability characteristics of soil

 
 
 
 

Abstract


Abstract It is necessary to enhance the barrier performance of cutoff walls in order to improve the contamination control level, especially for reconstruction or expansion of existing landfill sites. This paper presents a comprehensive laboratory investigation on the synergistic effects of microorganisms and fibers on the hydraulic conductivity of silty sand to evaluate the applicability to the field condition as an alterative barrier material. Inside the soil, the added carbon fibers not only provided good biocompatibility, but also formed spatial three-dimensional network between soil particles to improve the bacterial adhesion that eventually caused 2–3 orders of magnitude decrease in soil permeability. The resistance of the biofilm to extreme conditions was tested by permeation with solutions of different salinity and pH values, and by subjecting specimens to various hydraulic gradients and soil conditions. Despite the microbial growth inhibition occurred at these conditions, however, biofilm can largely remain intact and continue to reduce k, which due to the gradual adaptation of microorganisms to the extreme environment and the gradual recovery of their activity. Results of these tests demonstrate that biofilm treatment may be a feasible technology for creating waste containment barriers in soil.

Volume 49
Pages 707-721
DOI 10.1016/J.GEOTEXMEM.2020.11.010
Language English
Journal Geotextiles and Geomembranes

Full Text