Harmful algae | 2019

Rapid and sensitive detection method for Karlodinium veneficum by recombinase polymerase amplification coupled with lateral flow dipstick.

 
 
 
 
 
 

Abstract


The dinoflagellate Karlodinium veneficum that is usually present at relatively low cell abundances is a globally-distributed harmful algal bloom-forming species, which negatively affects marine ecosystems, fisheries, and human health. Hence, an efficient detection platform for the rapid and sensitive identification of K. veneficum is highly demanded. In this study, a method referred to as recombinase polymerase amplification coupled with lateral flow dipstick (RPA-LFD) was developed for the rapid detection of K. veneficum. The primers for RPA and the detection probe for LFD were designed to specially target the internal transcribed spacer of K. veneficum by molecular cloning and multiple alignments of the related sequences. The developed RPA can gain an approximately 300 bp specific band from K. veneficum. Successful amplification for RPA could be achieved at a temperature range of 35\u2009°C-45\u2009°C. RPA for 30\u2009min could produce enough products that could generate clearly visible electrophoresis bands and were adequate for subsequent LFD analysis. The RPA products can be visually detected by the naked eyes through an LFD after an automatic chromatography for 5\u2009min at room temperature. The developed RPA-LFD was exclusively specific for K. veneficum and displayed no cross-reactivity with other algal species that are commonly distributed along the Chinese coast. In addition, the lowest detection limit of RPA-LFD was 10\u2009ng μL-1 of genomic DNA and 0.1 cell mL-1, which was 100-fold sensitive than conventional PCR. In conclusion, the developed RPA-LFD assay in this study can be used as a rapid and sensitive method to monitor K. veneficum in the future.

Volume 84
Pages \n 1-9\n
DOI 10.1016/J.HAL.2019.01.011
Language English
Journal Harmful algae

Full Text