International Journal of Adhesion and Adhesives | 2019

Numerical and experimental analysis of bonded joints with combined loading

 
 
 

Abstract


Abstract The metallic materials bonding using structural adhesives has become an increasingly used process, presenting advantages when compared to other fastening methods such as screws and rivets. The aim of this paper is the numerical evaluation of bonded joints with combined loading (traction and shear) using the finite element method, comparing the results obtained with the experiments performed at the same configurations. Considering adhesive joints with the same bonded area, but with different linear dimensions, the mechanical strength may be different, which characterizes the shape factor. In this way, the analyzes considered the bonded area shape factor in nine different configurations, being modified both the height and the width of the joint, considering two points of force application for each group. For the numerical simulation, the cohesive zone models (CZM) were used, which use the concepts of linear elastic fracture mechanics (LEFM). These models consider that one or multiple interfaces or regions of fracture may be artificially introduced into the structures, which is done through the separation-traction laws. For this purpose, DCB (double cantilever beam) and ENF (end notched flexure) tests were performed, measuring this way the essential cohesive properties to the numerical modeling, especially the critical energy release in I and II modes (normal and shear, respectively). The influence of some cohesive properties on the maximum load of the bonded joint was investigated. The good numerical and experimental concordance in different configurations studied confirms that the CZM provide consistent results with the bonded joint experiments for the presented conditions of adhesive thickness, surface treatment and load application point, not only in single lap joints, but also in combined loading joints, whose investigation was done in this work.

Volume 90
Pages 61-70
DOI 10.1016/J.IJADHADH.2019.02.002
Language English
Journal International Journal of Adhesion and Adhesives

Full Text