International Journal of Hydrogen Energy | 2021

The influence of the processing route on the fragmentation of (Nb,Ti)C stringers and its role on mechanical properties and hydrogen embrittlement of nickel based alloy 718

 
 
 
 
 
 
 

Abstract


Abstract The nickel-base superalloy 718 is a precipitation hardened alloy widely used in the nuclear fuel assembly of pressurized water reactors (PWR). However, the alloy can experience failure due to hydrogen embrittlement (HE). The processing route can influence the microstructure of the material and, therefore, the HE degree. In particular, the size and distribution of the (Nb,Ti)C particles can be affected by the processing. In this regard, the objective of this work was to analyze the influence of cold and hot deformation processing routes on the development of the microstructure, and the consequences on mechanical properties and hydrogen embrittlement. Tensile samples were hydrogenated through gaseous charging and compared to non-hydrogenated samples. Characterization was performed via scanning and transmission electron microscopies, as well as electron backscattered diffraction. The processing was effective to promote significant variations in average grain size and length fraction of special Σ3n boundaries, as well as reduction of average (Nb,Ti)C particle size, being these changes more intense for the cold-rolled route. For the mechanical properties, on one side, the cold-rolled route presented the highest increase in ductility for non-hydrogenated samples, while, on the other side, had the highest degree of embrittlement under hydrogen. This dual behavior was attributed to the interaction of hydrogen with the (Nb,Ti)C particles and stringers and its ensuing influence on the fracture processes.

Volume None
Pages None
DOI 10.1016/J.IJHYDENE.2021.02.127
Language English
Journal International Journal of Hydrogen Energy

Full Text