Journal of Constructional Steel Research | 2021

Tests, numerical modelling and design of a novel cold-formed steel Tab connection

 
 
 
 
 

Abstract


Abstract Cold-formed steel (CFS) Tab connections are popular due to their rapid fastening and ease of installation, and their applications have increased recently in Pacific countries, including Australia and New Zealand. This type of connection consists of a Tab plate formed from the web of the supporting beam and is screwed to the joist web, providing a dependable load path from the joist to the galvanized C-section supporting beam. However, no studies have been reported in the literature for the shear capacity of such connections. This paper presents a shear test program designed to determine the shear capacity of CFS Tab connections and to identify their failure mechanism. The experimental program included three different beam sizes, C-150, C-190 and C-240. Each test was repeated three times, resulting in nine tests in total. All the specimens failed in plate yielding and plate tearing, which occurred on the tension side of the plate (top region). Nonlinear finite element (FE) models were then developed and verified against the test results. The FE results showed good agreement with the test results in terms of connection stiffness, connection strength and failure modes. Finally, it was shown that the design equations given in the Australia/New Zealand standard (AS/NZS 4600) and American Iron and Steel Institute (AISI S100) for predicting the combined bending and shear capacity could predict the ultimate shear capacity of CFS Tab connections investigated in this study.

Volume 185
Pages 106846
DOI 10.1016/J.JCSR.2021.106846
Language English
Journal Journal of Constructional Steel Research

Full Text