Journal of Electroanalytical Chemistry | 2019

Improving the electrochemical performance of LaPrNiO4+δ as an oxygen electrode for intermediate temperature solid oxide cells by varying the architectural design

 
 
 

Abstract


Abstract Rare earth nickelate, LaPrNiO4+δ (LPNO), is one of the most suitable oxygen electrode materials for Intermediate Temperature Solid Oxide Cells (IT-SOC). By using Electrostatic Spray Deposition (ESD) and Screen Printing (SP), various architectural designs of electrodes are fabricated on Ce0.9Gd0.1O2-δ (GDC) electrolyte. Three electrode configurations are investigated based on a single Active Functional Layer (AFL), a double layer of the same composition which is an AFL topped by a current collecting layer (CCL) and a triple layer which is mainly the double layer with an LPNO/GDC composite interface. For each configuration, the electrode response and properties are analyzed by using Electrochemical Impedance Spectroscopy (EIS), X-ray diffraction and Scanning Electron Microscopy (SEM). The electrochemical properties are discussed as a function of the electrode design, microstructure, and composition with the presence of a higher order nickelate such as (La,Pr)3Ni2O7-δ. The electrochemical performance is enhanced thanks to better adhesion of the electrode onto the electrolyte, the presence of an LPNO/GDC composite interface, a more homogeneous distribution of fine grains, and a flatter electrode surface. A significant decrease in the polarization resistance (Rpol) is measured from 0.72, 0.50, and down to 0.20\u202fΩ\u202fcm2 at 600\u202f°C from single to triple layer, respectively.

Volume 849
Pages 113373
DOI 10.1016/J.JELECHEM.2019.113373
Language English
Journal Journal of Electroanalytical Chemistry

Full Text