Journal of Manufacturing Systems | 2019

Changeability and flexibility of assembly line balancing as a multi-objective optimization problem

 
 
 
 

Abstract


Abstract Current trends, such as customers demand for individual products and shorter product life cycles, are addressed by companies through a greater variety of products and variants. With regard to the line balancing of flow assembly systems, however, adjustments are associated with high investments, which requires a new planning approach for assembly line balancing. Existing approaches do not consider the reallocation of assembly tasks or the dimensioning of system-inherent flexibility and changeability according to requirements. Furthermore, they neglect the uncertainty of the future market situation. The proposed approach aims at optimizing the line balancing of flow assembly systems, taking into account the potential need for adaptation in order to meet this uncertain planning environment. For this purpose, the exchange of occurring costs as well as flexibility and changeability of the system is focused. Based on scenarios, potential future compositions of the variant mix are investigated and the resulting implications for the assembly system are derived. By applying the approach, an adequate adaptable assembly line balancing is generated by performing a mixed integer linear optimization. Since the evaluation and identification of adequacy are subject to subjective factors, several potentially adequate solutions are generated, which differ in terms of costs, flexibility and changeability. The result of the presented approach is a front of pareto-optimal assembly line balancing configurations. In order to show its practical applicability, a use case in automotive assembly line balancing is presented.

Volume 53
Pages 150-158
DOI 10.1016/J.JMSY.2019.09.012
Language English
Journal Journal of Manufacturing Systems

Full Text