Journal of thermal biology | 2021

Molecular characterization of ubiquitin-conjugating enzyme gene ube2h and siRNA-mediated regulation on targeting p53 in turbot, Scophthalmus maximus.

 
 
 
 
 
 
 
 

Abstract


Ubiquitin-conjugating enzymes are key factors in the ubiquitin proteasome pathway (UPP), which play key roles in ubiquitination. These enzymes affect the efficiency of UPP during stress conditions. P53 has important control of cell cycle arrest and apoptosis in response to cellular stress; these modifications are critical for the stability and transcriptional activity of p53 as the protein activates downstream target genes that dictate the cellular response. However, few studies have investigated the effects of thermal stress in turbot (Scophthalmus maximus), specifically the UPP signaling pathway, and the crosstalk between the ube2h and p53. In this study, the rapid amplification of cDNA ends was used to obtain a full-length cDNA of the turbot UBE2H gene (Sm-ube2h) and perform bioinformatics analysis. Our results showed that the cDNA of the Sm-ube2h was 718 bp in length, encoding a 189\xa0amino acid protein, with a theoretical isoelectric point of 4.77. It also contained a catalytic (UBCc) domain. Expression of Sm-ube2h in different tissues was detected and quantified by qPCR, which was highest in the spleen and lowest in the liver. We also investigated the Sm-ube2h expression profiles in the liver and heart after thermal stress, and changes in Sm-ube2h and p53 under thermal stress, upon RNA interference. Our data speculated that Sm-ube2h and p53 exhibited antagonistic effects under normal temperature conditions after ube2h interference, but displayed synergistic effects under thermal stress, suggesting the crosstalk between UPP and p53 signaling pathway. Our results improved our understanding of the underlying molecular mechanism of thermal tolerance in turbot.

Volume 99
Pages \n 102938\n
DOI 10.1016/J.JTHERBIO.2021.102938
Language English
Journal Journal of thermal biology

Full Text