Journal of water process engineering | 2021

Novel shortcut biological nitrogen removal using activated sludge-biofilm coupled with symbiotic algae

 
 
 
 
 
 

Abstract


Abstract This study evaluated a novel shortcut biological nitrogen removal (BNR) method using activated sludge-biofilm coupled with microalgae in a photo-sequencing batch biofilm reactor (PSBBR) for treating high ammonia nitrogen (NH4+-N) wastewater. Results showed that the symbiotic microalgae supplied oxygen and an additional organic carbon source for bacteria. The consortium achieved high nitrogen removal efficiency (> 90%) and had the potential to lower the operating cost when used for treating biogas slurry (BS). It saved more than 50% of the external carbon source and reduced about 78% of oxygen demand compared with the conventional BNR process. Nitrogen was removed mainly through shortcut nitrification-denitrification (SCND) (> 80%) and biological assimilation (6.8%) in the PSBBR. The algal-bacterial symbiosis improved the species richness but reduced the microbial diversity of the biofilm. Nitrosomonas with an abundance of 19.81% was the dominant ammonia-oxidizing bacteria (AOB) in the biofilm, while Thauera with an abundance of 45.03% played a leading role in denitrification. This study concurrently indicated that algae and activated sludge coupling increased the nitrous oxide (N2O) emission in the shortcut nitrogen removal process.

Volume 43
Pages 102275
DOI 10.1016/J.JWPE.2021.102275
Language English
Journal Journal of water process engineering

Full Text