Mutation research | 2019

Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo and in vivo.

 
 
 
 
 
 

Abstract


The genotoxicity of TiO2 nanoparticles (NPs) was assessed with the cytokinesis-block micronucleus (CBMN) assay in TK6 lymphoblastoid cells, lymphocytes from human volunteers, and bone marrow erythrocytes from rats exposed in vivo; and with the comet assay (detecting both strand breaks and oxidised purines) in human and rat peripheral blood mononuclear cells (PBMCs). NPs were dispersed using three different methods giving different size distribution and stability. On average, TiO2 NPs caused no increase in micronuclei in TK6 cells, rat bone marrow erythrocytes or human lymphocytes (though lymphocytes from 3 out of 13 human subjects showed significant increases). PBMCs from rats treated in vivo with a single dose of NPs dispersed by a method with low agglomeration showed an increase in strand breaks after 1 day. TiO2 NPs dispersed in a stable, non-agglomerated state induced DNA strand breaks at 75\u2009μg/cm2 after 4\u2009h exposure of human PBMCs and at 15\u2009μg/cm2 and 75\u2009μg/cm2 after 24\u2009h exposure, but no increase in DNA oxidation was seen. Overall, NPs in an agglomerated state did not cause DNA damage. However, at the individual level, significant increases in strand breaks were seen in PBMCs from most of the volunteers. Cells from one volunteer showed positive effects in all conditions and both tests, while cells from another volunteer appeared to be completely resitant to TiO2 NPs. The implication is that some individuals may be more sensitive than others to effects of this nanomaterial. Differences seen in results obtained with the micronucleus and the comet assay may be due to the mechanisms underlying the genotoxic effects of TiO2 NPs and the different endpoints represented by the two assays.

Volume 843
Pages \n 57-65\n
DOI 10.1016/J.MRGENTOX.2019.05.001
Language English
Journal Mutation research

Full Text