Pattern recognition | 2019

Three-dimensional Krawtchouk descriptors for protein local surface shape comparison

 
 
 

Abstract


Direct comparison of three-dimensional (3D) objects is computationally expensive due to the need for translation, rotation, and scaling of the objects to evaluate their similarity. In applications of 3D object comparison, often identifying specific local regions of objects is of particular interest. We have recently developed a set of 2D moment invariants based on discrete orthogonal Krawtchouk polynomials for comparison of local image patches. In this work, we extend them to 3D and construct 3D Krawtchouk descriptors (3DKDs) that are invariant under translation, rotation, and scaling. The new descriptors have the ability to extract local features of a 3D surface from any region-of-interest. This property enables comparison of two arbitrary local surface regions from different 3D objects. We present the new formulation of 3DKDs and apply it to the local shape comparison of protein surfaces in order to predict ligand molecules that bind to query proteins.

Volume 93
Pages \n 534-545\n
DOI 10.1016/J.PATCOG.2019.05.019
Language English
Journal Pattern recognition

Full Text