Precambrian Research | 2021

Neoproterozoic geodynamics of South China and implications on the Rodinia configuration: The Kunyang Group revisited

 
 
 
 
 
 
 
 
 
 

Abstract


Abstract The late Mesoproterozoic to early Neoproterozoic strata in the Yangtze Block hold a key position in deciphering the tectonic evolution of the South China Block and implicate upon the reconstruction of the Rodinia supercontinent. The sedimentological, geochronologic, and geochemical data on the Kunyang Group, southwestern Yangtze Block, were evaluated for a better understanding of the regional geodynamics and refinement in its paleoposition in the Rodinia supercontinent. Our findings constrain the deposition of the Kunyang Group sediments occurring during 1152\xa0Ma and 1000\xa0Ma, under a stable environment with alternating neritic and littoral facies sedimentation. In contrast, deposition of the Meidang Formation, traditionally thought to represent the upper part of the Kunyang Group, continued up to 866\xa0Ma in an active setting at varying basin depths and hydrodynamic conditions. Moderate to high SiO2 contents (57.7–95.4\xa0wt%), highly variable K2O/Na2O ratios (0.01–55.8), and critical trace element abundances (Zr: 57.6–578\xa0ppm, Th: 1.95–28.3\xa0ppm, Sc: 0.75–24.3\xa0ppm), detrital zircon age distribution, sedimentological characteristics, and bimodal magmatism cumulatively underline a transition from continental rift to passive continental margin setting, followed by an active continental margin setting. The onset of oceanic subduction below the SW-NW margin of the Yangtze Block caused a hiatus in sedimentation, marked by an unconformity between the Kunyang Group and Meidang Formation. Paleocurrent data, zircon U-Pb ages, and Lu-Hf isotopic characteristics indicate that the Kunyang Group received detritus from some interior sources and exotic terranes, such as the Gawler Craton in Australia, the Transantarctic Mountains in East Antarctica, and the Ongole domain in the Eastern Dharwar Craton of India. The Yangtze Block was likely located to the west of Australia and East Antarctica and north of India in the Rodinia supercontinent. Paleocurrent data also confirm an external location for the Yangtze Block in the Rodinia paleogeographic configuration.

Volume 363
Pages 106338
DOI 10.1016/J.PRECAMRES.2021.106338
Language English
Journal Precambrian Research

Full Text