Archive | 2019

A comparative study on partially premixed combustion (PPC) and reactivity controlled compression ignition (RCCI) in an optical engine

 
 
 
 
 
 
 
 

Abstract


Abstract Partially premixed combustion (PPC) and reactivity controlled compression ignition (RCCI) are two new combustion modes in compression-ignition (CI) engines. However, the detailed in-cylinder ignition and flame development process in these two CI modes were not clearly understood. In the present study, firstly, the fuel stratification, ignition and flame development in PPC and RCCI were comparatively studied on a light-duty optical engine using multiple optical diagnostic techniques. The overall fuel reactivity (PRF number) and concentration (fuel-air equivalence ratio) were kept at 70 and 0.77 for both modes, respectively. Iso-octane and n-heptane were separately used in the port-injection (PI) and direct-injection (DI) for RCCI, while PRF70 fuel was introduced through direct-injection (DI) for PPC. The DI timing for both modes was fixed at –25°CA ATDC. Secondly, the combustion characteristics of PPC and RCCI with more premixed charge were explored by increasing the PI mass fraction for RCCI and using the split DI strategy for PPC. In the first part, results show that RCCI has shorter ignition delay than PPC due to the fuel reactivity stratification. The natural flame luminosity, formaldehyde and OH PLIF images prove that the flame front propagation in the early stage of PPC can be seen, while there is no distinct flame front propagation in RCCI. In the second part, the higher premixed ratio results in more auto-ignition sites and faster combustion rate for PPC. However, the higher premixed ratio reduces the combustion rate in RCCI mode and the flame front propagation can be clearly seen, the flame speed of which is similar to that in spark ignition engines but lower than that in PPC. It can be concluded that the ratio of flame front propagation and auto-ignition in RCCI and PPC can be modulated by the control over the fuel stratification degree through different fuel-injection strategies.

Volume 37
Pages 4759-4766
DOI 10.1016/J.PROCI.2018.06.004
Language English
Journal None

Full Text